Marketplace

Unnamed Skill

Detect codebase bloat through progressive analysis: dead code, duplication, complexity, and documentation bloat.Triggers: bloat detection, dead code, code cleanup, duplication, redundancy, codebase health, technical debt, unused codeUse when: preparing for refactoring, context usage is high, quarterly maintenance, pre-release cleanupDO NOT use when: actively developing new features, time-sensitive bug fixes.DO NOT use when: codebase is < 1000 lines (insufficient scale for bloat).Progressive 3-tier detection: quick scan → targeted analysis → deep audit.

$ Installer

git clone https://github.com/athola/claude-night-market /tmp/claude-night-market && cp -r /tmp/claude-night-market/plugins/conserve/skills/bloat-detector ~/.claude/skills/claude-night-market

// tip: Run this command in your terminal to install the skill


name: bloat-detector description: |

Triggers: optimization, technical-debt, bloat, detector, static-analysis Detect codebase bloat through progressive analysis: dead code, duplication, complexity, and documentation bloat.

Triggers: bloat detection, dead code, code cleanup, duplication, redundancy, codebase health, technical debt, unused code

Use when: preparing for refactoring, context usage is high, quarterly maintenance, pre-release cleanup

DO NOT use when: actively developing new features, time-sensitive bug fixes. DO NOT use when: codebase is < 1000 lines (insufficient scale for bloat).

Progressive 3-tier detection: quick scan → targeted analysis → deep audit. category: conservation tags: [bloat, cleanup, static-analysis, technical-debt, optimization] dependencies: [] tools: [Bash, Grep, Glob, Read] modules:

  • quick-scan
  • git-history-analysis
  • code-bloat-patterns
  • documentation-bloat
  • static-analysis-integration progressive_loading: true usage_patterns:
  • bloat-detection
  • codebase-cleanup
  • technical-debt-reduction complexity: intermediate estimated_tokens: 800

Table of Contents

Bloat Detector

Overview

Systematically detect and eliminate codebase bloat through progressive analysis tiers. Reduces context consumption, improves navigability, and identifies technical debt hotspots.

Bloat Categories:

  • Code: Dead code, God classes, Lava flow, duplication
  • Documentation: Redundancy, excessive nesting, verbosity
  • Dependencies: Unused imports, dependency bloat
  • Git History: Stale files, low-churn code, orphaned branches

Quick Start

Tier 1: Quick Scan (5 minutes, no tools required)

# Heuristic-based detection
/bloat-scan

Verification: Run the command with --help flag to verify availability.

Detects:

  • Files > 500 lines (God class candidates)
  • Stale files (unchanged 6+ months)
  • TODO/FIXME comments > 3 months old
  • Commented code blocks
  • Basic duplication patterns

Output: Prioritized quick wins with token savings estimates

Tier 2: Targeted Analysis (15 minutes, optional tools)

# Focus on specific bloat types
/bloat-scan --level 2 --focus code
/bloat-scan --level 2 --focus docs
/bloat-scan --level 2 --focus deps

Verification: Run the command with --help flag to verify availability.

Detects:

  • Static analysis (Vulture, deadcode, Knip if available)
  • Git churn × complexity hotspots
  • Documentation similarity (duplicate content)
  • Import graph analysis

Output: Detailed findings with confidence levels, remediation steps

Tier 3: Deep Audit (1 hour, full tooling)

# Deep analysis across all dimensions
/bloat-scan --level 3 --report audit-report.md

Verification: Run the command with --help flag to verify availability.

Detects:

  • Full static analysis suite
  • Cross-file redundancy
  • Dependency graph visualization
  • Readability metrics (Flesch-Kincaid)
  • Bundle size analysis (JS/TS)

Output: Full audit report, refactoring roadmap, automated fixes

When to Use

Recommended Triggers:

  • ✅ Context usage > 30% regularly
  • ✅ Quarterly maintenance cycles
  • ✅ Pre-release cleanup
  • ✅ Onboarding feedback: "hard to navigate"
  • ✅ Before major refactoring

Avoid Using:

  • ❌ During active feature development
  • ❌ Time-sensitive bug fixes
  • ❌ Codebases < 1000 lines
  • ❌ When tools are unavailable (Tier 2/3)

Detection Confidence Levels

LevelConfidenceAction
HIGH (90-100%)Multiple signals confirmSafe to remove
MEDIUM (70-89%)Single tool + heuristicReview before action
LOW (50-69%)Heuristic onlyManual investigation needed
INVESTIGATEEdge caseDomain knowledge required

Prioritization Formula

Priority Score = (
    (Token_Savings × 0.4) +
    (Maintenance_Impact × 0.3) +
    (Confidence_Level × 0.2) +
    (Fix_Ease × 0.1)
)

Verification: Run the command with --help flag to verify availability.

Output ranked by descending priority score.

Module Architecture

Tier 1: Quick Scan (Always Available)

  • quick-scan.md: Heuristic-based detection, no external tools
  • git-history-analysis.md: Staleness, churn metrics, reference counting

Tier 2: Targeted Analysis (Optional Tools)

  • code-bloat-patterns.md: God classes, Lava flow, anti-patterns
  • documentation-bloat.md: Redundancy, readability, similarity
  • static-analysis-integration.md: Tool integration (Vulture, Knip, etc.)

Tier 3: Deep Audit (Full Tooling)

All above + deep cross-file analysis, dependency graphs, automated fixes

Integration Points

  • Context Optimization: Provides bloat metrics to MECW assessment
  • Performance Monitoring: Correlates bloat with performance issues
  • Git Workflows (sanctum): Integrates with PR review, cleanup branches
  • Memory Palace: Stores bloat patterns as knowledge for future detection

Example Output

=== Bloat Detection Report ===

Scan Level: 1 (Quick Scan)
Duration: 2m 34s
Files Scanned: 847

HIGH PRIORITY (Immediate Action):
   plugins/old-plugin/legacy.py
     - 1,247 lines (God class)
     - Unchanged 18 months
     - No imports found (dead code)
     - Confidence: 95%
     - Token Savings: ~4,500 tokens
     - Action: DELETE or archive

   docs/archive/old-guide.md
     - 87% similar to docs/current-guide.md
     - Duplicate content detected
     - Confidence: 92%
     - Token Savings: ~2,100 tokens
     - Action: MERGE or remove

MEDIUM PRIORITY (Review Soon):
  ⚠️  src/core/manager.py
     - 634 lines, 15 methods
     - God class candidate
     - Confidence: 75%
     - Impact: High (core module)
     - Action: REFACTOR into smaller classes

  ⚠️  5 files with duplicate error handling
     - Pattern detected across modules
     - Confidence: 70%
     - Token Savings: ~1,200 tokens
     - Action: EXTRACT to shared utility

STATS:
  - Estimated bloat: 3,847 lines (14% of codebase)
  - Potential token savings: ~18,000 tokens
  - Context reduction: ~12%
  - High-confidence findings: 3
  - Medium-confidence findings: 6

NEXT STEPS:
  1. Review HIGH priority items (3 findings)
  2. Run Tier 2 scan for detailed analysis: /bloat-scan --level 2
  3. Create cleanup branch: git checkout -b cleanup/bloat-reduction
  4. Track progress with issue: /create-issue "Bloat reduction Q1 2025"

Verification: Run git status to confirm working tree state.

Safety & Guardrails

NEVER auto-delete without approval:

  • All deletions require explicit user confirmation
  • Provide preview diffs before changes
  • Support --dry-run flag for all operations
  • Create backup branches before bulk changes

Automatic Cache Directory Exclusion:

All scan operations automatically exclude files and directories using a three-tier approach:

  1. Default Excludes (always applied):

    # Python
    .venv/, venv/, __pycache__/, .pytest_cache/, .mypy_cache/, .ruff_cache/, .tox/
    
    # JavaScript/Node
    node_modules/
    
    # Build artifacts
    dist/, build/, *.egg-info/
    
    # Version control
    .git/
    
    # Dependencies
    vendor/
    
    # IDE
    .vscode/, .idea/
    

    Verification: Run pytest -v to verify tests pass.

  2. .gitignore Integration (if present):

    • Automatically inherits patterns from your .gitignore
    • Respects project-specific exclusions
    • Prevents scanning generated files, build artifacts, etc.
  3. .bloat-ignore (optional, bloat-specific overrides):

    • Additional patterns specific to bloat detection
    • Can override or extend .gitignore patterns
    • Useful for excluding test fixtures, templates, etc.

Exclusion Priority: Default → .gitignore.bloat-ignore

False Positive Mitigation:

  • Multi-signal validation (git + static + heuristic)
  • Automatic exclusion of cache/dependency directories
  • .gitignore pattern inheritance
  • Optional .bloat-ignore file support
  • Test file exemptions
  • Generated code detection

Detailed Resources

  • Quick Scan: See modules/quick-scan.md for heuristic patterns
  • Git Analysis: See modules/git-history-analysis.md for churn metrics
  • Code Patterns: See modules/code-bloat-patterns.md for anti-patterns
  • Doc Bloat: See modules/documentation-bloat.md for similarity detection
  • Static Analysis: See modules/static-analysis-integration.md for tool setup

Related Skills

  • context-optimization: MECW principles, token reduction
  • performance-monitoring: Resource usage correlation
  • resource-management: Broader optimization strategies

Related Agents

  • bloat-auditor: Executes scans, generates reports, recommends actions

Troubleshooting

Common Issues

Command not found Ensure all dependencies are installed and in PATH

Permission errors Check file permissions and run with appropriate privileges

Unexpected behavior Enable verbose logging with --verbose flag