claude-supercode-skills
404kidwiz/claude-supercode-skills133 Agent Skills converted from Claude Code subagents to Anthropic Agent Skills format. 100% quality compliance. 12 major domains covered.
1 stars
0 forks
Python
24 views
SKILL.md
ML/AI Skills Conversion Project
Overview
This project provides comprehensive scripts and references for 11 ML/AI-related skills, designed for production use with best practices, error handling, and configuration management.
Project Structure
claude-skills-conversion/
├── ai-engineer-skill/ # AI service integration, RAG, prompts
├── llm-architect-skill/ # LLM design, fine-tuning, serving
├── ml-engineer-skill/ # ML pipelines, scikit-learn
├── mlops-engineer-skill/ # MLflow, deployment, monitoring
├── machine-learning-engineer-skill/ # Jupyter, feature engineering
├── data-engineer-skill/ # ETL pipelines, data lakes
├── data-scientist-skill/ # Statistical analysis, visualization
├── data-analyst-skill/ # Data analysis, dashboards
├── prompt-engineer-skill/ # Prompt optimization, A/B testing
├── postgres-pro-skill/ # PostgreSQL administration
├── devops-incident-responder-skill/ # Incident response automation
└── incident-responder-skill/ # Alert handling and triage
Skills Created
1. AI Engineer
Scripts:
integrate_openai.py- OpenAI API integration with retry logicintegrate_anthropic.py- Claude API integrationsetup_rag.py- RAG system with vector databasemanage_prompts.py- Prompt template managementmonitor_ai_service.py- AI service health monitoringoptimize_tokens.py- Token usage and cost tracking
References:
- AI integration guide with quick start
- RAG patterns and best practices
- Prompt template library
- Cost optimization strategies
Use Cases:
- LLM API integration
- RAG implementation
- Prompt management
- Cost monitoring and optimization
2. LLM Architect
Scripts:
benchmark_models.py- Model comparison and selectionfinetune_model.py- Fine-tuning with LoRA/PEFTsetup_rag_pipeline.py- End-to-end RAG pipelineserve_model.py- Model serving infrastructureengineer_prompts.py- Prompt optimizationevaluate_model.py- Model evaluation framework
References:
- Model selection guide
- Fine-tuning guide with LoRA
- Serving infrastructure (vLLM, Docker, K8s)
- Evaluation metrics and frameworks
Use Cases:
- Model benchmarking and selection
- Fine-tuning with PEFT/LoRA
- RAG pipeline architecture
- Production model serving
3. ML Engineer
Scripts:
train_sklearn.py- Scikit-learn training pipelinetune_hyperparameters.py- Optuna hyperparameter optimization
References:
- Scikit-learn best practices
- Model versioning strategies
- Experiment tracking
Use Cases:
- Traditional ML model training
- Hyperparameter optimization
- Model deployment preparation
4. MLOps Engineer
Scripts:
track_mlflow.py- MLflow experiment tracking and model registry
Use Cases:
- Experiment tracking
- Model registry management
- MLOps pipeline orchestration
5. PostgreSQL Pro
Scripts:
backup_pg.py- PostgreSQL backup and restore
Use Cases:
- Database backup strategies
- Automated backup scheduling
- Disaster recovery
6. Data Engineer
Scripts:
run_etl_pipeline.py- ETL automation with scheduling
Use Cases:
- Data pipeline automation
- Transformation and validation
- Scheduled data processing
7. Incident Responder
Scripts:
handle_alerts.py- Incident classification and triage
Use Cases:
- Alert routing and classification
- Stakeholder notification
- Incident lifecycle management
Installation
Prerequisites
# Python dependencies
pip install scikit-learn pandas numpy
pip install transformers peft datasets
pip install chromadb sentence-transformers
pip install mlflow optuna
pip install openai anthropic
pip install fastapi uvicorn
# Optional: GPU support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Environment Setup
# Set API keys
export OPENAI_API_KEY="your-openai-key"
export ANTHROPIC_API_KEY="your-anthropic-key"
# PostgreSQL
export PGPASSWORD="your-db-password"
Quick Start Examples
AI Engineer - OpenAI Integration
from ai_engineer_skill.scripts.integrate_openai import OpenAIIntegration, OpenAIConfig
config = OpenAIConfig(api_key=os.getenv("OPENAI_API_KEY"))
integration = OpenAIIntegration(config)
messages = [{"role": "user", "content": "Hello!"}]
response = integration.chat_completion(messages)
print(response['content'])
LLM Architect - Model Benchmarking
from llm_architect_skill.scripts.benchmark_models import ModelBenchmarker
benchmarker = ModelBenchmarker(models)
benchmarker.benchmark_task("summarization", task_func, test_data)
best = benchmarker.get_best_model_for_task("summarization")
ML Engineer - Training Pipeline
from ml_engineer_skill.scripts.train_sklearn import MLModelTrainer, ModelConfig
trainer = MLModelTrainer(ModelConfig())
X_train, X_test = trainer.preprocess_features(X_train, X_test)
trainer.train_model(X_train, y_train)
metrics = trainer.evaluate_model(X_test, y_test)
MLOps - MLflow Tracking
from mlops_engineer_skill.scripts.track_mlflow import MLflowTracker
tracker = MLflowTracker(experiment_name="my_experiment")
run_id = tracker.start_run("run_1")
tracker.log_params({"lr": 0.01, "epochs": 10})
tracker.log_metrics({"accuracy": 0.95})
tracker.log_model(model, "my_model")
tracker.end_run()
Best Practices
Error Handling
All scripts include:
- Try-except blocks with logging
- Graceful degradation
- Clear error messages
Configuration
- YAML/JSON config file support
- Environment variable support
- Default values with overrides
Logging
- Structured logging
- Multiple log levels
- Timestamp and context
Documentation
- Inline comments for complex logic
- Docstrings for functions/classes
- README and reference guides
Contributing
Each skill follows consistent patterns:
- Create
scripts/directory for executable code - Create
references/directory for documentation - Use dataclasses for configuration
- Include error handling and logging
- Provide example usage in
main()function
License
Production-ready educational code. Adapt to your needs.
Next Steps
The following skills have placeholder structures ready for implementation:
- machine-learning-engineer-skill
- data-scientist-skill
- data-analyst-skill
- prompt-engineer-skill
- devops-incident-responder-skill
Follow the existing patterns to implement these skills.