openrouter-trending-models
Fetch trending programming models from OpenRouter rankings. Use when selecting models for multi-model review, updating model recommendations, or researching current AI coding trends. Provides model IDs, context windows, pricing, and usage statistics from the most recent week.
$ 설치
git clone https://github.com/MadAppGang/claude-code /tmp/claude-code && cp -r /tmp/claude-code/skills/openrouter-trending-models ~/.claude/skills/claude-code// tip: Run this command in your terminal to install the skill
name: openrouter-trending-models description: Fetch trending programming models from OpenRouter rankings. Use when selecting models for multi-model review, updating model recommendations, or researching current AI coding trends. Provides model IDs, context windows, pricing, and usage statistics from the most recent week.
OpenRouter Trending Models Skill
Overview
This skill provides access to current trending programming models from OpenRouter's public rankings. It executes a Bun script that fetches, parses, and structures data about the top 9 most-used AI models for programming tasks.
What you get:
- Model IDs and names (e.g.,
x-ai/grok-code-fast-1) - Token usage statistics (last week's trends)
- Context window sizes (input capacity)
- Pricing information (per token and per 1M tokens)
- Summary statistics (top provider, price ranges, averages)
Data Source:
- OpenRouter Rankings (https://openrouter.ai/rankings?category=programming)
- OpenRouter Models API (https://openrouter.ai/api/v1/models)
Update Frequency: Weekly (OpenRouter updates rankings every week)
When to Use This Skill
Use this skill when you need to:
-
Select models for multi-model review
- Plan reviewer needs current trending models
- User asks "which models should I use for review?"
- Updating model recommendations in agent workflows
-
Research AI coding trends
- Developer wants to know most popular coding models
- Comparing model capabilities (context, pricing, usage)
- Identifying "best value" models for specific tasks
-
Update plugin documentation
- Refreshing model lists in README files
- Keeping agent prompts current with trending models
- Documentation maintenance workflows
-
Cost optimization
- Finding cheapest models with sufficient context
- Comparing pricing across trending models
- Budget planning for AI-assisted development
-
Model recommendations
- User asks "what's the best model for X?"
- Providing data-driven suggestions vs hardcoded lists
- Offering alternatives based on requirements
Quick Start
Running the Script
Basic Usage:
bun run scripts/get-trending-models.ts
Output to File:
bun run scripts/get-trending-models.ts > trending-models.json
Pretty Print:
bun run scripts/get-trending-models.ts | jq '.'
Help:
bun run scripts/get-trending-models.ts --help
Expected Output
The script outputs structured JSON to stdout:
{
"metadata": {
"fetchedAt": "2025-11-14T10:30:00.000Z",
"weekEnding": "2025-11-10",
"category": "programming",
"view": "trending"
},
"models": [
{
"rank": 1,
"id": "x-ai/grok-code-fast-1",
"name": "Grok Code Fast",
"tokenUsage": 908664328688,
"contextLength": 131072,
"maxCompletionTokens": 32768,
"pricing": {
"prompt": 0.0000005,
"completion": 0.000001,
"promptPer1M": 0.5,
"completionPer1M": 1.0
}
}
// ... 8 more models
],
"summary": {
"totalTokens": 4500000000000,
"topProvider": "x-ai",
"averageContextLength": 98304,
"priceRange": {
"min": 0.5,
"max": 15.0,
"unit": "USD per 1M tokens"
}
}
}
Execution Time
Typical execution: 2-5 seconds
- Fetch rankings: ~1 second
- Fetch model details: ~1-2 seconds (parallel requests)
- Parse and format: <1 second
Output Format
Metadata Object
{
fetchedAt: string; // ISO 8601 timestamp of when data was fetched
weekEnding: string; // YYYY-MM-DD format, end of ranking week
category: "programming"; // Fixed category
view: "trending"; // Fixed view type
}
Models Array (9 items)
Each model contains:
{
rank: number; // 1-9, position in trending list
id: string; // OpenRouter model ID (e.g., "x-ai/grok-code-fast-1")
name: string; // Human-readable name (e.g., "Grok Code Fast")
tokenUsage: number; // Total tokens used last week
contextLength: number; // Maximum input tokens
maxCompletionTokens: number; // Maximum output tokens
pricing: {
prompt: number; // Per-token input cost (USD)
completion: number; // Per-token output cost (USD)
promptPer1M: number; // Input cost per 1M tokens (USD)
completionPer1M: number; // Output cost per 1M tokens (USD)
}
}
Summary Object
{
totalTokens: number; // Sum of token usage across top 9 models
topProvider: string; // Most represented provider (e.g., "x-ai")
averageContextLength: number; // Average context window size
priceRange: {
min: number; // Lowest prompt price per 1M tokens
max: number; // Highest prompt price per 1M tokens
unit: "USD per 1M tokens";
}
}
Integration Examples
Example 1: Dynamic Model Selection in Agent
Scenario: Plan reviewer needs current trending models for multi-model review
# In plan-reviewer agent workflow
STEP 1: Fetch trending models
- Execute: Bash("bun run scripts/get-trending-models.ts > /tmp/trending-models.json")
- Read: /tmp/trending-models.json
STEP 2: Parse and present to user
- Extract top 3-5 models from models array
- Display with context and pricing info
- Let user select preferred model(s)
STEP 3: Use selected model for review
- Pass model ID to Claudish proxy
Implementation:
// Agent reads output
const data = JSON.parse(bashOutput);
// Extract top 5 models
const topModels = data.models.slice(0, 5);
// Present to user
const modelList = topModels.map((m, i) =>
`${i + 1}. **${m.name}** (\`${m.id}\`)
- Context: ${m.contextLength.toLocaleString()} tokens
- Pricing: $${m.pricing.promptPer1M}/1M input
- Usage: ${(m.tokenUsage / 1e9).toFixed(1)}B tokens last week`
).join('\n\n');
// Ask user to select
const userChoice = await AskUserQuestion(`Select model for review:\n\n${modelList}`);
Example 2: Find Best Value Models
Scenario: User wants high-context models at lowest cost
# Fetch models and filter with jq
bun run scripts/get-trending-models.ts | jq '
.models
| map(select(.contextLength > 100000))
| sort_by(.pricing.promptPer1M)
| .[:3]
| .[] | {
name,
id,
contextLength,
price: .pricing.promptPer1M
}
'
Output:
{
"name": "Gemini 2.5 Flash",
"id": "google/gemini-2.5-flash",
"contextLength": 1000000,
"price": 0.075
}
{
"name": "Grok Code Fast",
"id": "x-ai/grok-code-fast-1",
"contextLength": 131072,
"price": 0.5
}
Example 3: Update Plugin Documentation
Scenario: Automated weekly update of README model recommendations
# Fetch models
bun run scripts/get-trending-models.ts > trending.json
# Extract top 5 model names and IDs
jq -r '.models[:5] | .[] | "- `\(.id)` - \(.name) (\(.contextLength / 1024)K context, $\(.pricing.promptPer1M)/1M)"' trending.json
# Output (ready for README):
# - `x-ai/grok-code-fast-1` - Grok Code Fast (128K context, $0.5/1M)
# - `anthropic/claude-4.5-sonnet-20250929` - Claude 4.5 Sonnet (200K context, $3.0/1M)
# - `google/gemini-2.5-flash` - Gemini 2.5 Flash (976K context, $0.075/1M)
Example 4: Check for New Trending Models
Scenario: Identify when new models enter top 9
# Save current trending models
bun run scripts/get-trending-models.ts | jq '.models | map(.id)' > current.json
# Compare with previous week (saved as previous.json)
diff <(jq -r '.[]' previous.json | sort) <(jq -r '.[]' current.json | sort)
# Output shows new entries (>) and removed entries (<)
Troubleshooting
Issue: Script Fails to Fetch Rankings
Error Message:
✗ Error: Failed to fetch rankings: fetch failed
Possible Causes:
- No internet connection
- OpenRouter site is down
- Firewall blocking openrouter.ai
- URL structure changed
Solutions:
- Test connectivity:
curl -I https://openrouter.ai/rankings
# Should return HTTP 200
-
Check URL in browser:
- Visit https://openrouter.ai/rankings
- Verify page loads and shows programming rankings
- If URL redirects, update RANKINGS_URL constant in script
-
Check firewall/proxy:
# Test from command line
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s"
# Should return HTML with embedded JSON
- Use fallback data:
- Keep last successful output as fallback
- Use cached trending-models.json if < 14 days old
Issue: Parse Error (Invalid RSC Format)
Error Message:
✗ Error: Failed to extract JSON from RSC format
Cause: OpenRouter changed their page structure
Solutions:
- Inspect raw HTML:
curl "https://openrouter.ai/rankings?category=programming&view=trending&_rsc=2nz0s" | head -200
-
Look for data pattern:
- Search for
"data":[{in output - Check if line starts with different prefix (not
1b:) - Verify JSON structure matches expected format
- Search for
-
Update regex in script:
- Edit
scripts/get-trending-models.ts - Modify regex in
fetchRankings()function - Test with new pattern
- Edit
-
Report issue:
- File issue in plugin repository
- Include raw HTML sample (first 500 chars)
- Specify when error started occurring
Issue: Model Details Not Found
Warning Message:
Warning: Model x-ai/grok-code-fast-1 not found in API, using defaults
Cause: Model ID in rankings doesn't match API
Impact: Model will have 0 values for context/pricing
Solutions:
- Verify model exists in API:
curl "https://openrouter.ai/api/v1/models" | jq '.data[] | select(.id == "x-ai/grok-code-fast-1")'
-
Check for ID mismatches:
- Rankings may use different ID format
- API might have model under different name
- Model may be new and not yet in API
-
Manual correction:
- Edit output JSON file
- Add correct details from OpenRouter website
- Note discrepancy for future fixes
Issue: Stale Data Warning
Symptom: Models seem outdated compared to OpenRouter site
Check data age:
jq '.metadata.fetchedAt' trending-models.json
# Compare with current date
Solutions:
- Re-run script:
bun run scripts/get-trending-models.ts > trending-models.json
-
Set up weekly refresh:
- Add to cron:
0 0 * * 1 cd /path/to/repo && bun run scripts/get-trending-models.ts > skills/openrouter-trending-models/trending-models.json - Or use GitHub Actions (see Automation section)
- Add to cron:
-
Add staleness check in agents:
const data = JSON.parse(readFile("trending-models.json"));
const fetchedDate = new Date(data.metadata.fetchedAt);
const daysSinceUpdate = (Date.now() - fetchedDate.getTime()) / (1000 * 60 * 60 * 24);
if (daysSinceUpdate > 7) {
console.warn("Data is over 7 days old, consider refreshing");
}
Best Practices
Data Freshness
Recommended Update Schedule:
- Weekly: Ideal (matches OpenRouter update cycle)
- Bi-weekly: Acceptable for stable periods
- Monthly: Minimum for production use
Staleness Guidelines:
- 0-7 days: Fresh (green)
- 8-14 days: Slightly stale (yellow)
- 15-30 days: Stale (orange)
- 30+ days: Very stale (red)
Caching Strategy
When to cache:
- Multiple agents need same data
- Frequent model selection workflows
- Avoiding rate limits
How to cache:
- Run script once:
bun run scripts/get-trending-models.ts > trending-models.json - Commit to repository (under
skills/openrouter-trending-models/) - Agents read from file instead of re-running script
- Refresh weekly via manual run or automation
Cache invalidation:
# Check if cache is stale (> 7 days)
if [ $(find trending-models.json -mtime +7) ]; then
echo "Cache is stale, refreshing..."
bun run scripts/get-trending-models.ts > trending-models.json
fi
Error Handling in Agents
Graceful degradation pattern:
1. Try to fetch fresh data
- Run: bun run scripts/get-trending-models.ts
- If succeeds: Use fresh data
- If fails: Continue to step 2
2. Try cached data
- Check if trending-models.json exists
- Check if < 14 days old
- If valid: Use cached data
- If not: Continue to step 3
3. Fallback to hardcoded models
- Use known good models from agent prompt
- Warn user data may be outdated
- Suggest manual refresh
Integration Patterns
Pattern 1: On-Demand (Fresh Data)
# Run before each use
bun run scripts/get-trending-models.ts > /tmp/models.json
# Read from /tmp/models.json
Pattern 2: Cached (Fast Access)
# Check cache age first
CACHE_FILE="skills/openrouter-trending-models/trending-models.json"
if [ ! -f "$CACHE_FILE" ] || [ $(find "$CACHE_FILE" -mtime +7) ]; then
bun run scripts/get-trending-models.ts > "$CACHE_FILE"
fi
# Read from cache
Pattern 3: Background Refresh (Non-Blocking)
# Start refresh in background (don't wait)
bun run scripts/get-trending-models.ts > trending-models.json &
# Continue with workflow
# Use cached data if available
# Fresh data will be ready for next run
Changelog
v1.0.0 (2025-11-14)
- Initial release
- Fetch top 9 trending programming models from OpenRouter
- Parse RSC streaming format
- Include context length, pricing, and token usage
- Zero dependencies (Bun built-in APIs only)
- Comprehensive error handling
- Summary statistics (total tokens, top provider, price range)
Future Enhancements
Planned Features
- Category selection (programming, creative, analysis, etc.)
- Historical trend tracking (compare week-over-week)
- Provider filtering (focus on specific providers)
- Cost calculator (estimate workflow costs)
Research Ideas
- Correlate rankings with model performance benchmarks
- Identify "best value" models (performance/price ratio)
- Predict upcoming trending models
- Multi-category analysis
Skill Version: 1.0.0 Last Updated: November 14, 2025 Maintenance: Weekly refresh recommended Dependencies: Bun runtime, internet connection
Repository
