neuropixels-analysis
Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation.
$ Installieren
git clone https://github.com/davila7/claude-code-templates /tmp/claude-code-templates && cp -r /tmp/claude-code-templates/cli-tool/components/skills/scientific/neuropixels-analysis ~/.claude/skills/claude-code-templates// tip: Run this command in your terminal to install the skill
name: neuropixels-analysis description: "Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation."
Neuropixels Data Analysis
Overview
Comprehensive toolkit for analyzing Neuropixels high-density neural recordings using current best practices from SpikeInterface, Allen Institute, and International Brain Laboratory (IBL). Supports the full workflow from raw data to publication-ready curated units.
When to Use This Skill
This skill should be used when:
- Working with Neuropixels recordings (.ap.bin, .lf.bin, .meta files)
- Loading data from SpikeGLX, Open Ephys, or NWB formats
- Preprocessing neural recordings (filtering, CAR, bad channel detection)
- Detecting and correcting motion/drift in recordings
- Running spike sorting (Kilosort4, SpykingCircus2, Mountainsort5)
- Computing quality metrics (SNR, ISI violations, presence ratio)
- Curating units using Allen/IBL criteria
- Creating visualizations of neural data
- Exporting results to Phy or NWB
Supported Hardware & Formats
| Probe | Electrodes | Channels | Notes |
|---|---|---|---|
| Neuropixels 1.0 | 960 | 384 | Requires phase_shift correction |
| Neuropixels 2.0 (single) | 1280 | 384 | Denser geometry |
| Neuropixels 2.0 (4-shank) | 5120 | 384 | Multi-region recording |
| Format | Extension | Reader |
|---|---|---|
| SpikeGLX | .ap.bin, .lf.bin, .meta | si.read_spikeglx() |
| Open Ephys | .continuous, .oebin | si.read_openephys() |
| NWB | .nwb | si.read_nwb() |
Quick Start
Basic Import and Setup
import spikeinterface.full as si
import neuropixels_analysis as npa
# Configure parallel processing
job_kwargs = dict(n_jobs=-1, chunk_duration='1s', progress_bar=True)
Loading Data
# SpikeGLX (most common)
recording = si.read_spikeglx('/path/to/data', stream_id='imec0.ap')
# Open Ephys (common for many labs)
recording = si.read_openephys('/path/to/Record_Node_101/')
# Check available streams
streams, ids = si.get_neo_streams('spikeglx', '/path/to/data')
print(streams) # ['imec0.ap', 'imec0.lf', 'nidq']
# For testing with subset of data
recording = recording.frame_slice(0, int(60 * recording.get_sampling_frequency()))
Complete Pipeline (One Command)
# Run full analysis pipeline
results = npa.run_pipeline(
recording,
output_dir='output/',
sorter='kilosort4',
curation_method='allen',
)
# Access results
sorting = results['sorting']
metrics = results['metrics']
labels = results['labels']
Standard Analysis Workflow
1. Preprocessing
# Recommended preprocessing chain
rec = si.highpass_filter(recording, freq_min=400)
rec = si.phase_shift(rec) # Required for Neuropixels 1.0
bad_ids, _ = si.detect_bad_channels(rec)
rec = rec.remove_channels(bad_ids)
rec = si.common_reference(rec, operator='median')
# Or use our wrapper
rec = npa.preprocess(recording)
2. Check and Correct Drift
# Check for drift (always do this!)
motion_info = npa.estimate_motion(rec, preset='kilosort_like')
npa.plot_drift(rec, motion_info, output='drift_map.png')
# Apply correction if needed
if motion_info['motion'].max() > 10: # microns
rec = npa.correct_motion(rec, preset='nonrigid_accurate')
3. Spike Sorting
# Kilosort4 (recommended, requires GPU)
sorting = si.run_sorter('kilosort4', rec, folder='ks4_output')
# CPU alternatives
sorting = si.run_sorter('tridesclous2', rec, folder='tdc2_output')
sorting = si.run_sorter('spykingcircus2', rec, folder='sc2_output')
sorting = si.run_sorter('mountainsort5', rec, folder='ms5_output')
# Check available sorters
print(si.installed_sorters())
4. Postprocessing
# Create analyzer and compute all extensions
analyzer = si.create_sorting_analyzer(sorting, rec, sparse=True)
analyzer.compute('random_spikes', max_spikes_per_unit=500)
analyzer.compute('waveforms', ms_before=1.0, ms_after=2.0)
analyzer.compute('templates', operators=['average', 'std'])
analyzer.compute('spike_amplitudes')
analyzer.compute('correlograms', window_ms=50.0, bin_ms=1.0)
analyzer.compute('unit_locations', method='monopolar_triangulation')
analyzer.compute('quality_metrics')
metrics = analyzer.get_extension('quality_metrics').get_data()
5. Curation
# Allen Institute criteria (conservative)
good_units = metrics.query("""
presence_ratio > 0.9 and
isi_violations_ratio < 0.5 and
amplitude_cutoff < 0.1
""").index.tolist()
# Or use automated curation
labels = npa.curate(metrics, method='allen') # 'allen', 'ibl', 'strict'
6. AI-Assisted Curation (For Uncertain Units)
When using this skill with Claude Code, Claude can directly analyze waveform plots and provide expert curation decisions. For programmatic API access:
from anthropic import Anthropic
# Setup API client
client = Anthropic()
# Analyze uncertain units visually
uncertain = metrics.query('snr > 3 and snr < 8').index.tolist()
for unit_id in uncertain:
result = npa.analyze_unit_visually(analyzer, unit_id, api_client=client)
print(f"Unit {unit_id}: {result['classification']}")
print(f" Reasoning: {result['reasoning'][:100]}...")
Claude Code Integration: When running within Claude Code, ask Claude to examine waveform/correlogram plots directly - no API setup required.
7. Generate Analysis Report
# Generate comprehensive HTML report with visualizations
report_dir = npa.generate_analysis_report(results, 'output/')
# Opens report.html with summary stats, figures, and unit table
# Print formatted summary to console
npa.print_analysis_summary(results)
8. Export Results
# Export to Phy for manual review
si.export_to_phy(analyzer, output_folder='phy_export/',
compute_pc_features=True, compute_amplitudes=True)
# Export to NWB
from spikeinterface.exporters import export_to_nwb
export_to_nwb(rec, sorting, 'output.nwb')
# Save quality metrics
metrics.to_csv('quality_metrics.csv')
Common Pitfalls and Best Practices
- Always check drift before spike sorting - drift > 10ÎŒm significantly impacts quality
- Use phase_shift for Neuropixels 1.0 probes (not needed for 2.0)
- Save preprocessed data to avoid recomputing - use
rec.save(folder='preprocessed/') - Use GPU for Kilosort4 - it's 10-50x faster than CPU alternatives
- Review uncertain units manually - automated curation is a starting point
- Combine metrics with AI - use metrics for clear cases, AI for borderline units
- Document your thresholds - different analyses may need different criteria
- Export to Phy for critical experiments - human oversight is valuable
Key Parameters to Adjust
Preprocessing
freq_min: Highpass cutoff (300-400 Hz typical)detect_threshold: Bad channel detection sensitivity
Motion Correction
preset: 'kilosort_like' (fast) or 'nonrigid_accurate' (better for severe drift)
Spike Sorting (Kilosort4)
batch_size: Samples per batch (30000 default)nblocks: Number of drift blocks (increase for long recordings)Th_learned: Detection threshold (lower = more spikes)
Quality Metrics
snr_threshold: Signal-to-noise cutoff (3-5 typical)isi_violations_ratio: Refractory violations (0.01-0.5)presence_ratio: Recording coverage (0.5-0.95)
Bundled Resources
scripts/preprocess_recording.py
Automated preprocessing script:
python scripts/preprocess_recording.py /path/to/data --output preprocessed/
scripts/run_sorting.py
Run spike sorting:
python scripts/run_sorting.py preprocessed/ --sorter kilosort4 --output sorting/
scripts/compute_metrics.py
Compute quality metrics and apply curation:
python scripts/compute_metrics.py sorting/ preprocessed/ --output metrics/ --curation allen
scripts/export_to_phy.py
Export to Phy for manual curation:
python scripts/export_to_phy.py metrics/analyzer --output phy_export/
assets/analysis_template.py
Complete analysis template. Copy and customize:
cp assets/analysis_template.py my_analysis.py
# Edit parameters and run
python my_analysis.py
reference/standard_workflow.md
Detailed step-by-step workflow with explanations for each stage.
reference/api_reference.md
Quick function reference organized by module.
reference/plotting_guide.md
Comprehensive visualization guide for publication-quality figures.
Detailed Reference Guides
| Topic | Reference |
|---|---|
| Full workflow | reference/standard_workflow.md |
| API reference | reference/api_reference.md |
| Plotting guide | reference/plotting_guide.md |
| Preprocessing | PREPROCESSING.md |
| Spike sorting | SPIKE_SORTING.md |
| Motion correction | MOTION_CORRECTION.md |
| Quality metrics | QUALITY_METRICS.md |
| Automated curation | AUTOMATED_CURATION.md |
| AI-assisted curation | AI_CURATION.md |
| Waveform analysis | ANALYSIS.md |
Installation
# Core packages
pip install spikeinterface[full] probeinterface neo
# Spike sorters
pip install kilosort # Kilosort4 (GPU required)
pip install spykingcircus # SpykingCircus2 (CPU)
pip install mountainsort5 # Mountainsort5 (CPU)
# Our toolkit
pip install neuropixels-analysis
# Optional: AI curation
pip install anthropic
# Optional: IBL tools
pip install ibl-neuropixel ibllib
Project Structure
project/
âââ raw_data/
â âââ recording_g0/
â âââ recording_g0_imec0/
â âââ recording_g0_t0.imec0.ap.bin
â âââ recording_g0_t0.imec0.ap.meta
âââ preprocessed/ # Saved preprocessed recording
âââ motion/ # Motion estimation results
âââ sorting_output/ # Spike sorter output
âââ analyzer/ # SortingAnalyzer (waveforms, metrics)
âââ phy_export/ # For manual curation
âââ ai_curation/ # AI analysis reports
âââ results/
âââ quality_metrics.csv
âââ curation_labels.json
âââ output.nwb
Additional Resources
- SpikeInterface Docs: https://spikeinterface.readthedocs.io/
- Neuropixels Tutorial: https://spikeinterface.readthedocs.io/en/stable/how_to/analyze_neuropixels.html
- Kilosort4 GitHub: https://github.com/MouseLand/Kilosort
- IBL Neuropixel Tools: https://github.com/int-brain-lab/ibl-neuropixel
- Allen Institute ecephys: https://github.com/AllenInstitute/ecephys_spike_sorting
- Bombcell (Automated QC): https://github.com/Julie-Fabre/bombcell
- SpikeAgent (AI Curation): https://github.com/SpikeAgent/SpikeAgent
Repository
