google-gemini-embeddings
Build RAG systems, semantic search, and document clustering with Gemini embeddings API (gemini-embedding-001). Generate 768-3072 dimension embeddings for vector search, integrate with Cloudflare Vectorize, and use 8 task types (RETRIEVAL_QUERY, RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY) for optimized retrieval.Use when: implementing vector search with Google embeddings, building retrieval-augmented generation systems, creating semantic search features, clustering documents by meaning, integrating embeddings with Cloudflare Vectorize, optimizing dimension sizes (128-3072), or troubleshooting dimension mismatch errors, incorrect task type selections, rate limit issues (100 RPM free tier), vector normalization mistakes, or text truncation errors (2,048 token limit).
$ 安裝
git clone https://github.com/jezweb/claude-skills /tmp/claude-skills && cp -r /tmp/claude-skills/skills/google-gemini-embeddings ~/.claude/skills/claude-skills// tip: Run this command in your terminal to install the skill
Repository
