研究
研究工具和學術技能
3205 skills in this category
hypothesis-generation
Generate testable hypotheses. Formulate from observations, design experiments, explore competing explanations, develop predictions, propose mechanisms, for scientific inquiry across domains.
biopython
Comprehensive molecular biology toolkit. Use for sequence manipulation, file parsing (FASTA/GenBank/PDB), phylogenetics, and programmatic NCBI/PubMed access (Bio.Entrez). Best for batch processing, custom bioinformatics pipelines, BLAST automation. For quick lookups use gget; for multi-service integration use bioservices.
torchdrug
PyTorch-native graph neural networks for molecules and proteins. Use when building custom GNN architectures for drug discovery, protein modeling, or knowledge graph reasoning. Best for custom model development, protein property prediction, retrosynthesis. For pre-trained models and diverse featurizers use deepchem; for benchmark datasets use pytdc.
pyopenms
Complete mass spectrometry analysis platform. Use for proteomics workflows feature detection, peptide identification, protein quantification, and complex LC-MS/MS pipelines. Supports extensive file formats and algorithms. Best for proteomics, comprehensive MS data processing. For simple spectral comparison and metabolite ID use matchms.
scientific-visualization
Meta-skill for publication-ready figures. Use when creating journal submission figures requiring multi-panel layouts, significance annotations, error bars, colorblind-safe palettes, and specific journal formatting (Nature, Science, Cell). Orchestrates matplotlib/seaborn/plotly with publication styles. For quick exploration use seaborn or plotly directly.
scientific-writing
Core skill for the deep research and writing tool. Write scientific manuscripts in full paragraphs (never bullet points). Use two-stage process: (1) create section outlines with key points using research-lookup, (2) convert to flowing prose. IMRAD structure, citations (APA/AMA/Vancouver), figures/tables, reporting guidelines (CONSORT/STROBE/PRISMA), for research papers and journal submissions.
scientific-brainstorming
Creative research ideation and exploration. Use for open-ended brainstorming sessions, exploring interdisciplinary connections, challenging assumptions, or identifying research gaps. Best for early-stage research planning when you do not have specific observations yet. For formulating testable hypotheses from data use hypothesis-generation.
clinicaltrials-database
Query ClinicalTrials.gov via API v2. Search trials by condition, drug, location, status, or phase. Retrieve trial details by NCT ID, export data, for clinical research and patient matching.
scikit-learn
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
openalex-database
Query and analyze scholarly literature using the OpenAlex database. This skill should be used when searching for academic papers, analyzing research trends, finding works by authors or institutions, tracking citations, discovering open access publications, or conducting bibliometric analysis across 240M+ scholarly works. Use for literature searches, research output analysis, citation analysis, and academic database queries.
lamindb
This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.
seaborn
Statistical visualization with pandas integration. Use for quick exploration of distributions, relationships, and categorical comparisons with attractive defaults. Best for box plots, violin plots, pair plots, heatmaps. Built on matplotlib. For interactive plots use plotly; for publication styling use scientific-visualization.
neurokit2
Comprehensive biosignal processing toolkit for analyzing physiological data including ECG, EEG, EDA, RSP, PPG, EMG, and EOG signals. Use this skill when processing cardiovascular signals, brain activity, electrodermal responses, respiratory patterns, muscle activity, or eye movements. Applicable for heart rate variability analysis, event-related potentials, complexity measures, autonomic nervous system assessment, psychophysiology research, and multi-modal physiological signal integration.
denario
Multiagent AI system for scientific research assistance that automates research workflows from data analysis to publication. This skill should be used when generating research ideas from datasets, developing research methodologies, executing computational experiments, performing literature searches, or generating publication-ready papers in LaTeX format. Supports end-to-end research pipelines with customizable agent orchestration.
literature-review
Conduct comprehensive, systematic literature reviews using multiple academic databases (PubMed, arXiv, bioRxiv, Semantic Scholar, etc.). This skill should be used when conducting systematic literature reviews, meta-analyses, research synthesis, or comprehensive literature searches across biomedical, scientific, and technical domains. Creates professionally formatted markdown documents and PDFs with verified citations in multiple citation styles (APA, Nature, Vancouver, etc.).
fda-database
Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research.
peer-review
Systematic peer review toolkit. Evaluate methodology, statistics, design, reproducibility, ethics, figure integrity, reporting standards, for manuscript and grant review across disciplines.
biomni
Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
hypogenic
Automated LLM-driven hypothesis generation and testing on tabular datasets. Use when you want to systematically explore hypotheses about patterns in empirical data (e.g., deception detection, content analysis). Combines literature insights with data-driven hypothesis testing. For manual hypothesis formulation use hypothesis-generation; for creative ideation use scientific-brainstorming.
pubmed-database
Direct REST API access to PubMed. Advanced Boolean/MeSH queries, E-utilities API, batch processing, citation management. For Python workflows, prefer biopython (Bio.Entrez). Use this for direct HTTP/REST work or custom API implementations.