Data Science
1726 skills in Data & AI > Data Science
uspto-database
Access USPTO APIs for patent/trademark searches, examination history (PEDS), assignments, citations, office actions, TSDR, for IP analysis and prior art searches.
neurokit2
Comprehensive biosignal processing toolkit for analyzing physiological data including ECG, EEG, EDA, RSP, PPG, EMG, and EOG signals. Use this skill when processing cardiovascular signals, brain activity, electrodermal responses, respiratory patterns, muscle activity, or eye movements. Applicable for heart rate variability analysis, event-related potentials, complexity measures, autonomic nervous system assessment, psychophysiology research, and multi-modal physiological signal integration.
statsmodels
Statistical models library for Python. Use when you need specific model classes (OLS, GLM, mixed models, ARIMA) with detailed diagnostics, residuals, and inference. Best for econometrics, time series, rigorous inference with coefficient tables. For guided statistical test selection with APA reporting use statistical-analysis.
zarr-python
Chunked N-D arrays for cloud storage. Compressed arrays, parallel I/O, S3/GCS integration, NumPy/Dask/Xarray compatible, for large-scale scientific computing pipelines.
geopandas
Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.
openalex-database
Query and analyze scholarly literature using the OpenAlex database. This skill should be used when searching for academic papers, analyzing research trends, finding works by authors or institutions, tracking citations, discovering open access publications, or conducting bibliometric analysis across 240M+ scholarly works. Use for literature searches, research output analysis, citation analysis, and academic database queries.
seaborn
Statistical visualization with pandas integration. Use for quick exploration of distributions, relationships, and categorical comparisons with attractive defaults. Best for box plots, violin plots, pair plots, heatmaps. Built on matplotlib. For interactive plots use plotly; for publication styling use scientific-visualization.
flowio
Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.
gwas-database
Query NHGRI-EBI GWAS Catalog for SNP-trait associations. Search variants by rs ID, disease/trait, gene, retrieve p-values and summary statistics, for genetic epidemiology and polygenic risk scores.
plotly
Interactive visualization library. Use when you need hover info, zoom, pan, or web-embeddable charts. Best for dashboards, exploratory analysis, and presentations. For static publication figures use matplotlib or scientific-visualization.
exploratory-data-analysis
Perform comprehensive exploratory data analysis on scientific data files across 200+ file formats. This skill should be used when analyzing any scientific data file to understand its structure, content, quality, and characteristics. Automatically detects file type and generates detailed markdown reports with format-specific analysis, quality metrics, and downstream analysis recommendations. Covers chemistry, bioinformatics, microscopy, spectroscopy, proteomics, metabolomics, and general scientific data formats.
pydicom
Python library for working with DICOM (Digital Imaging and Communications in Medicine) files. Use this skill when reading, writing, or modifying medical imaging data in DICOM format, extracting pixel data from medical images (CT, MRI, X-ray, ultrasound), anonymizing DICOM files, working with DICOM metadata and tags, converting DICOM images to other formats, handling compressed DICOM data, or processing medical imaging datasets. Applies to tasks involving medical image analysis, PACS systems, radiology workflows, and healthcare imaging applications.
vaex
Use this skill for processing and analyzing large tabular datasets (billions of rows) that exceed available RAM. Vaex excels at out-of-core DataFrame operations, lazy evaluation, fast aggregations, efficient visualization of big data, and machine learning on large datasets. Apply when users need to work with large CSV/HDF5/Arrow/Parquet files, perform fast statistics on massive datasets, create visualizations of big data, or build ML pipelines that do not fit in memory.
market-research-reports
Generate comprehensive market research reports (50+ pages) in the style of top consulting firms (McKinsey, BCG, Gartner). Features professional LaTeX formatting, extensive visual generation with scientific-schematics and generate-image, deep integration with research-lookup for data gathering, and multi-framework strategic analysis including Porter's Five Forces, PESTLE, SWOT, TAM/SAM/SOM, and BCG Matrix.
bioservices
Unified Python interface to 40+ bioinformatics services. Use when querying multiple databases (UniProt, KEGG, ChEMBL, Reactome) in a single workflow with consistent API. Best for cross-database analysis, ID mapping across services. For quick single-database lookups use gget; for sequence/file manipulation use biopython.
gene-database
Query NCBI Gene via E-utilities/Datasets API. Search by symbol/ID, retrieve gene info (RefSeqs, GO, locations, phenotypes), batch lookups, for gene annotation and functional analysis.
dask
Distributed computing for larger-than-RAM pandas/NumPy workflows. Use when you need to scale existing pandas/NumPy code beyond memory or across clusters. Best for parallel file processing, distributed ML, integration with existing pandas code. For out-of-core analytics on single machine use vaex; for in-memory speed use polars.
drugbank-database
Access and analyze comprehensive drug information from the DrugBank database including drug properties, interactions, targets, pathways, chemical structures, and pharmacology data. This skill should be used when working with pharmaceutical data, drug discovery research, pharmacology studies, drug-drug interaction analysis, target identification, chemical similarity searches, ADMET predictions, or any task requiring detailed drug and drug target information from DrugBank.
xlsx
Spreadsheet toolkit (.xlsx/.csv). Create/edit with formulas/formatting, analyze data, visualization, recalculate formulas, for spreadsheet processing and analysis.
polars
Fast in-memory DataFrame library for datasets that fit in RAM. Use when pandas is too slow but data still fits in memory. Lazy evaluation, parallel execution, Apache Arrow backend. Best for 1-100GB datasets, ETL pipelines, faster pandas replacement. For larger-than-RAM data use dask or vaex.