Tools
Development tools, utilities, and productivity aids
17720 skills in this category
Subcategories
pr-code-review
Comprehensive code review for GitHub pull requests using parallel agents. Checks bugs, CLAUDE.md compliance, git history, previous PR patterns, and code comments. Use when reviewing PRs, doing code review, or when user mentions "review PR", "check PR", or provides a PR number.
moon-dev-trading-agents
Master Moon Dev's Ai Agents Github with 48+ specialized agents, multi-exchange support, LLM abstraction, and autonomous trading capabilities across crypto markets
networkx
Comprehensive toolkit for creating, analyzing, and visualizing complex networks and graphs in Python. Use when working with network/graph data structures, analyzing relationships between entities, computing graph algorithms (shortest paths, centrality, clustering), detecting communities, generating synthetic networks, or visualizing network topologies. Applicable to social networks, biological networks, transportation systems, citation networks, and any domain involving pairwise relationships.
stable-baselines3
Production-ready reinforcement learning algorithms (PPO, SAC, DQN, TD3, DDPG, A2C) with scikit-learn-like API. Use for standard RL experiments, quick prototyping, and well-documented algorithm implementations. Best for single-agent RL with Gymnasium environments. For high-performance parallel training, multi-agent systems, or custom vectorized environments, use pufferlib instead.
Unnamed Skill
CLI/Python toolkit for rapid bioinformatics queries. Preferred for quick BLAST searches. Access to 20+ databases: gene info (Ensembl/UniProt), AlphaFold, ARCHS4, Enrichr, OpenTargets, COSMIC, genome downloads. For advanced BLAST/batch processing, use biopython. For multi-database integration, use bioservices.
gtars
High-performance toolkit for genomic interval analysis in Rust with Python bindings. Use when working with genomic regions, BED files, coverage tracks, overlap detection, tokenization for ML models, or fragment analysis in computational genomics and machine learning applications.
pydicom
Python library for working with DICOM (Digital Imaging and Communications in Medicine) files. Use this skill when reading, writing, or modifying medical imaging data in DICOM format, extracting pixel data from medical images (CT, MRI, X-ray, ultrasound), anonymizing DICOM files, working with DICOM metadata and tags, converting DICOM images to other formats, handling compressed DICOM data, or processing medical imaging datasets. Applies to tasks involving medical image analysis, PACS systems, radiology workflows, and healthcare imaging applications.
scientific-writing
Core skill for the deep research and writing tool. Write scientific manuscripts in full paragraphs (never bullet points). Use two-stage process: (1) create section outlines with key points using research-lookup, (2) convert to flowing prose. IMRAD structure, citations (APA/AMA/Vancouver), figures/tables, reporting guidelines (CONSORT/STROBE/PRISMA), for research papers and journal submissions.
pyopenms
Complete mass spectrometry analysis platform. Use for proteomics workflows feature detection, peptide identification, protein quantification, and complex LC-MS/MS pipelines. Supports extensive file formats and algorithms. Best for proteomics, comprehensive MS data processing. For simple spectral comparison and metabolite ID use matchms.
torchdrug
PyTorch-native graph neural networks for molecules and proteins. Use when building custom GNN architectures for drug discovery, protein modeling, or knowledge graph reasoning. Best for custom model development, protein property prediction, retrosynthesis. For pre-trained models and diverse featurizers use deepchem; for benchmark datasets use pytdc.
clinpgx-database
Access ClinPGx pharmacogenomics data (successor to PharmGKB). Query gene-drug interactions, CPIC guidelines, allele functions, for precision medicine and genotype-guided dosing decisions.
protocolsio-integration
Integration with protocols.io API for managing scientific protocols. This skill should be used when working with protocols.io to search, create, update, or publish protocols; manage protocol steps and materials; handle discussions and comments; organize workspaces; upload and manage files; or integrate protocols.io functionality into workflows. Applicable for protocol discovery, collaborative protocol development, experiment tracking, lab protocol management, and scientific documentation.
pymatgen
Materials science toolkit. Crystal structures (CIF, POSCAR), phase diagrams, band structure, DOS, Materials Project integration, format conversion, for computational materials science.
clinical-reports
Write comprehensive clinical reports including case reports (CARE guidelines), diagnostic reports (radiology/pathology/lab), clinical trial reports (ICH-E3, SAE, CSR), and patient documentation (SOAP, H&P, discharge summaries). Full support with templates, regulatory compliance (HIPAA, FDA, ICH-GCP), and validation tools.
biopython
Comprehensive molecular biology toolkit. Use for sequence manipulation, file parsing (FASTA/GenBank/PDB), phylogenetics, and programmatic NCBI/PubMed access (Bio.Entrez). Best for batch processing, custom bioinformatics pipelines, BLAST automation. For quick lookups use gget; for multi-service integration use bioservices.
pylabrobot
Vendor-agnostic lab automation framework. Use when controlling multiple equipment types (Hamilton, Tecan, Opentrons, plate readers, pumps) or needing unified programming across different vendors. Best for complex workflows, multi-vendor setups, simulation. For Opentrons-only protocols with official API, opentrons-integration may be simpler.
pptx
Presentation toolkit (.pptx). Create/edit slides, layouts, content, speaker notes, comments, for programmatic presentation creation and modification.
clinicaltrials-database
Query ClinicalTrials.gov via API v2. Search trials by condition, drug, location, status, or phase. Retrieve trial details by NCT ID, export data, for clinical research and patient matching.
scvi-tools
Deep generative models for single-cell omics. Use when you need probabilistic batch correction (scVI), transfer learning, differential expression with uncertainty, or multi-modal integration (TOTALVI, MultiVI). Best for advanced modeling, batch effects, multimodal data. For standard analysis pipelines use scanpy.
deeptools
NGS analysis toolkit. BAM to bigWig conversion, QC (correlation, PCA, fingerprints), heatmaps/profiles (TSS, peaks), for ChIP-seq, RNA-seq, ATAC-seq visualization.